Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 160: 213865, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38643693

RESUMO

Microneedle technology offers a minimally invasive treatment strategy to deliver chemotherapeutics to localized tumors. Amalgamating the surface functionalized nanoparticles with microneedle technology can potentially deliver drugs directly to tumors and subsequently target cancer cells via, overexpressed receptors on the cell surface, thereby enhancing the treatment efficacy while reducing side effects. Here, we report cetuximab anchored hyaluronic acid-oleylamine and chitosan-oleic acid-based hybrid nanoparticle (HA-OA/CS-OA NPT)-loaded dissolving microneedles (MN) for targeted delivery of cabazitaxel (CBT) in localized breast cancer tumor. The HA-OA/CS-OA NPT was characterized for their size, surface charge, morphology, physicochemical characteristics, drug release behavior, and in vitro anti-cancer efficacy. The HA-OA/CS-OA NPT were of ~125 nm size, showed enhanced cytotoxicity and cellular uptake, and elicited a superior apoptotic response against MDA-MB-231 cells. Subsequently, the morphology and physicochemical characteristics of HA-OA/CS-OA NPT-loaded MN were also evaluated. The fabricated microneedles were of ~550 µm height and showed loading of nanoparticles equivalent to ~250 µg of CBT. The ex vivo skin permeation study revealed fast dissolution of microneedles upon hydration, while the drug permeation across the skin exhibited ~4-fold improvement in comparison to free drug-loaded MN. In vivo studies performed on DMBA-induced breast cancer in female SD rats showed a marked reduction in tumor volume after administration of drug and nanoparticle-loaded microneedles in comparison to intravenous administration of free drug. However, the HA-OA/CS-OA NPT-MN showed the highest tumor reduction and survival rate, with the lowest body weight reduction in comparison to other treatment groups, indicating its superior efficacy and low systemic toxicity. Overall, the dissolving microneedle-mediated delivery of targeted nanoparticles loaded with chemotherapeutics offers a superior alternative to conventional intravenous chemotherapy.

2.
Colloids Surf B Biointerfaces ; 237: 113865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520950

RESUMO

BACKGROUND: Nanocrystals can be produced as a dry powder for inhalation (DPIs) to deliver high doses of drug to the lungs, owing to their high payload and stability to the shear stress of aerosolization force. Furthermore, lipid-coated nanocrystals can be formulated to improve the drug accumulation and retention in lung. OBJECTIVE: The present work involved the fabrication of paclitaxel nanocrystals using hydrophilic marine biopolymer fucoidan as a stabilizer. Thereafter, fabricated nanocrystals (FPNC) were surface-modified with phospholipid to give lipid-coated nanocrystals (Lipo-NCs). METHODS: The nanocrystals were fabricated by antisolvent crystallization followed by the probe sonication. The lipid coating was achieved by thin film hydration followed ultrasonic dispersion technique. Prepared nanocrystals were lyophilized to obtain a dry powder of FPNC and Lipo-NCs, used later for physicochemical, microscopic, and spectroscopic characterization to confirm the successful formation of desired nanocrystals. In-vitro and in-vivo investigations were also conducted to determine the role of nanocrystal powder in pulmonary drug delivery. RESULTS: Lipo-NCs exhibited slower drug release, excellent flow properties, good aerosolization performance, higher drug distribution, and prolonged retention in the lungs compared to FPNC and pure PTX. CONCLUSION: Lipid-coated nanocrystals can be a novel formulation for the maximum localization of drugs in the lungs, thereby enhancing therapeutic effects and avoiding systemic side effects in lung cancer therapy.


Assuntos
Nanopartículas , Paclitaxel , Paclitaxel/química , Pós , Administração por Inalação , Nanopartículas/química , Lipídeos , Tamanho da Partícula
3.
Nanomedicine (Lond) ; 19(7): 633-651, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445583

RESUMO

Nanomedicine has opened up new avenues for cancer treatment by enhancing drug solubility, permeability and targeted delivery to cancer cells. Despite its numerous advantages over conventional therapies, nanomedicine may exhibit off-target drug distribution, harming nontarget regions. The increased permeation and retention effect of nanomedicine in tumor sites also has its limitations, as abnormal tumor vasculature, dense stroma structure and altered tumor microenvironment (TME) may result in limited intratumor distribution and therapeutic failure. However, TME-responsive nanomedicine has exhibited immense potential for efficient, safe and precise delivery of therapeutics utilizing stimuli specific to the TME. This review discusses the mechanistic aspects of various TME-responsive biopolymers and their application in developing various types of TME-responsive nanomedicine.


Assuntos
Nanomedicina , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Sistemas de Liberação de Medicamentos
4.
Int J Biol Macromol ; 261(Pt 1): 129621, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278381

RESUMO

The current study focuses on the development of gelatin-coated polycaprolactone (PCL) nanofibers co-loaded with luliconazole and naringenin for accelerated healing of infected diabetic wounds. Inherently, PCL nanofibers have excellent biocompatibility and biodegradation profiles but lack bioadhesion characteristics, which limits their use as dressing materials. So, coating them with a biocompatible and hydrophilic material like gelatin can improve bioadhesion. The preparation of nanofibers was done with the electrospinning technique. The solid state characterization and in-vitro performance assessment of nanofibers indicate the formation of uniformly interconnected nanofibers of 200-400 nm in diameter with smooth surface topography, excellent drug entrapment, and a surface pH of 5.6-6.8. The antifungal study showed that the nanofiber matrix exhibits excellent biofilm inhibition activity against several strains of Candida. Further, in-vivo assessment of nanofiber performance on C. albicans infected wounds in diabetic rats indicated accelerated wound healing efficacy in comparison to gauge-treated groups. Additionally, a higher blood flow and rapid re-epithelialization of wound tissue in the treatment group corroborated with the results obtained in the wound closure study. Overall, the developed dual-drug-loaded electrospun nanofiber mats have good compatibility, surface properties, and excellent wound healing potential, which can provide an extra edge in the management of complex diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Flavanonas , Imidazóis , Nanofibras , Poliésteres , Infecção dos Ferimentos , Ratos , Animais , Gelatina/química , Nanofibras/química , Candida , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Candida albicans
5.
Int J Biol Macromol ; 258(Pt 2): 128978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145692

RESUMO

Chronic wounds are prone to fungal infections, possess a significant challenge, and result in substantial mortality. Diabetic wounds infected with Candida strains are extremely common. It can create biofilm at the wound site, which can lead to antibiotic resistance. As a result, developing innovative dressing materials that combat fungal infections while also providing wound healing is a viable strategy to treat infected wounds and address the issue of antibiotic resistance. Present work proposed anti-infective dressing material for the treatment of fungal strains Candida-infected diabetic foot ulcer (DFU). The nanofiber was fabricated using polyvinyl Alcohol/chitosan as hydrogel base and co-loaded with silver nanoparticles (AgNP) and luliconazole-nanoparticles (LZNP) nanoparticles, prepared using PLGA. Fabricated nanofibers had pH close to target area and exhibited hydrophilic surface suitable for adhesion to wound area. The nanofibers showed strong antifungal and antibiofilm properties against different strains of Candida; mainly C. albicans, C. auris, C. krusei, C. parapsilosis and C. tropicalis. Nanofibers exhibited excellent water retention potential and water vapour transmission rate. The nanofibers had sufficient payload capacity towards AgNP and LZNP, and provided controlled release of payload, which was also confirmed by in-vivo imaging. In-vitro studies confirmed the biocompatibility and enhanced proliferation of Human keratinocytes cells (HaCaT). In-vivo studies showed accelerated wound closure by providing ant-infective action, supporting cellular proliferation and improving blood flow, all collectively contributing in expedited wound healing.


Assuntos
Quitosana , Diabetes Mellitus , Pé Diabético , Glicolatos , Imidazóis , Nanopartículas Metálicas , Micoses , Nanofibras , Humanos , Quitosana/química , Álcool de Polivinil/química , Prata/química , Nanopartículas Metálicas/química , Nanofibras/química , Glicóis , Candida , Antibacterianos/química
6.
Ther Deliv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38124684

RESUMO

Aim: Design of moxifloxacin and ornidazole co-loaded polycaprolactone and gelatin nanofiber dressing for diabetic wounds. Materials & methods: The composite nanofibers were prepared using electrospinning technique and characterized for in vitro drug release, antibacterial activity, laser doppler and in vivo wound healing. Results: The optimized nanofiber demonstrated an interconnected bead free nanofiber with average diameter <200 nm. The in vitro drug release & antimicrobial studies revealed that optimized nanofiber provided drug release for >120 h, thereby inhibiting growth of Escherichia coli and Stapyhlococcus aureus. An in vivo wound closure study on diabetic rats found that optimized nanofiber group had a significantly higher wound closure rate than marketed formulation. Conclusion: The nanofiber provided prolonged drug release and accelerated wound healing, making it a promising candidate for diabetic wound care.


This article is about making a wound dressing material of tiny fibres that have antibiotic properties to kill microbes at the wound site and make wounds heal faster. This is particularly important for people with diabetes, whose wounds often take longer to heal. The designed nanofibrous dressing releases antibiotic drugs at the wound site for more than 120 h, killing harmful microbes and thus avoiding their invasion at wound site. Also, animal experiments showed that the nanofibers shorten the time wounds take to heal by providing a suitable surface and a favourable environment for wound healing. The study concludes that the fabricated nanofiber dressing helps complex wounds heal faster, and could be a strong new dressing material for diabetic wound care.

7.
AAPS PharmSciTech ; 24(8): 219, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891363

RESUMO

In the current work, screening of polymers viz. polyacrylic acid (PAA), polyvinyl pyrrolidone vinyl acetate (PVP VA), and hydroxypropyl methyl cellulose acetate succinate (HPMC AS) based on drug-polymer interaction and wetting property was done for the production of a stable amorphous solid dispersion (ASD) of a poorly water-soluble drug Riluzole (RLZ). PAA showed maximum interaction and wetting property hence, was selected for further studies. Solid state characterization studies confirmed the formation of ASD with PAA. Saturation solubility, dissolution profile, and in vivo pharmacokinetic data of the ASD formulation were generated in rats against its marketed tablet Rilutor. The RLZ:PAA ASD showed exponential enhancement in the dissolution of RLZ. Predicted and observed pharmacokinetic data in rats showed enhanced area under curve (AUC) and Cmax in plasma and brain with respect to Rilutor. Furthermore, a physiologically based pharmacokinetic (PBPK) model of rats for Rilutor and RLZ ASD was developed and then extrapolated to humans where physiological parameters were changed along with a biochemical parameter. The partition coefficient was kept similar in both species. The model was used to predict different exposure scenarios, and the simulated data was compared with observed data points. The PBPK model simulated Cmax and AUC was within two times the experimental data for plasma and brain. The Cmax and AUC in the brain increased with ASD compared to Rilutor for humans showing its potential in improving its biopharmaceutical performance and hence enhanced therapeutic efficacy. The model can predict the RLZ concentration in multiple compartments including plasma and liver.


Assuntos
Polímeros , Riluzol , Ratos , Humanos , Animais , Polímeros/química , Povidona/química , Solubilidade , Molhabilidade
8.
Biomater Adv ; 153: 213542, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418933

RESUMO

Type 2 diabetes mellitus (T2DM) is a serious and alarming disease attracting widespread attention. It is not a single metabolic disease; over time, it leads to serious disorders, namely, diabetic nephropathy, neuropathy, retinopathy and several cardiovascular, hepatocellular complications. The increase in T2DM cases in recent times has attracted significant attention. Currently, the medications available have side effects, and injectables are painful, causing trauma to the patients. Therefore, it is imperative to come up with oral delivery. In this background we report here a nanoformulation carrying natural small molecule Myricetin (MYR) encapsulated within Chitosan nanoparticles (CHT-NPs). MYR-CHT-NPs were prepared by ionic gelation method and evaluated using different characterization techniques. The in vitro release of MYR from CHT NPs in different physiological media showed pH dependence. in vivo pharmacodynamic study followed by oral administration in Albino Wistar rats showed better glycaemic control than existing drug. Further, the optimized nanoparticles also exhibited controlled increase in weight as compared to Metformin. The biochemistry profile of rats treated with nanoformulation reduced the levels of several pathological biomarkers, indicating additional benefits of MYR. Histopathological images exhibited no toxicity or changes in the major organs section in contrast to normal control, suggesting safe oral administration of the encapsulated MYR. Thus, we conclude that MYR-CHT-NPs represent an attractive delivery vehicle in improving the blood glucose level with controlled weight and have the potential to be safely administered orally for the management of T2DM.


Assuntos
Quitosana , Diabetes Mellitus Tipo 2 , Nanopartículas , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Quitosana/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Nanopartículas/química , Ratos Wistar
9.
Nanomedicine (Lond) ; 17(12): 913-934, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35451334

RESUMO

Inflammatory lung disorders have become one of the fastest growing global healthcare concerns, with more than 500 million annual cases of disorders such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Owing to environmental changes and socioeconomic disparity, the numbers are expected to grow even more in years to come. The therapeutic strategies and approved drugs currently employed in the management of inflammatory lung disorders show dose-dependent resistance and pharmacokinetic limitations. This review comprehensively discusses lipid-based pulmonary nanomedicine as a potential platform to overcome these barriers while ensuring site-specific drug delivery and minimal side effects in nontargeted tissues for the management of noninfectious inflammatory lung disorders.


Assuntos
Nanopartículas , Fibrose Pulmonar , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos , Pulmão , Nanomedicina , Nanopartículas/uso terapêutico
10.
Curr Drug Targets ; 22(11): 1232-1254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33371846

RESUMO

Coronaviruses are a group of known RNA virus which primarily infect the respiratory tract, and also neurological, enteric, and hepatic systems. Endemic outbreaks of Middle East Coronavirus Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) have been observed in recent decades. A new strain named the SARS CoV-2(- COVID-19) virus has now spread across the globe. SARS-CoV-2 is highly communicable and has culminated in a massive pandemic of COVID-19. Currently, no successful treatment is available. Therefore, an urgent need is there for new screening models that can aid in identifying the drugs with potential activity against COVID-19. The current review aims to discuss various in-silico, in- -vitro and in-vivo screening methods that can potentially be used to expedite the discovery of new active therapeutic candidates and vaccines, drug targets, and repurposing the commercially available drugs against COVID-19 for the effective management of the infection and thereby controlling this pandemic. Further, the current status of drugs and vaccines under clinical investigation has been summarized.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Pandemias
11.
Biometals ; 29(3): 399-409, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26923568

RESUMO

Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer's disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid ß (Aß) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-ß. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing.


Assuntos
Envelhecimento , Clioquinol/análogos & derivados , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/prevenção & controle , Galactose/farmacologia , Sulfato de Zinco/farmacologia , Administração Oral , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Animais , Clioquinol/administração & dosagem , Clioquinol/química , Clioquinol/farmacologia , Clioquinol/uso terapêutico , Transtornos Cognitivos/metabolismo , Relação Dose-Resposta a Droga , Galactose/administração & dosagem , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos , Sulfato de Zinco/administração & dosagem
12.
Fundam Clin Pharmacol ; 29(2): 131-49, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659970

RESUMO

Zinc is the authoritative metal which is present in our body, and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.


Assuntos
Encefalopatias/metabolismo , Encéfalo/metabolismo , Zinco/metabolismo , Animais , Transporte Biológico/fisiologia , Encéfalo/patologia , Encefalopatias/diagnóstico , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Homeostase/fisiologia , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...